convex set

Definition

A set 𝒮\mathcal{S} is convex if for any 𝐱,𝐲𝒮\mathbf{x},\mathbf{y} \in \mathcal{S}, λ[0,1]\lambda \in [0,1]: (1λ)𝐱+λ𝐲𝒮(1-\lambda)\mathbf{x} + \lambda \mathbf{y} \in \mathcal{S}


Theorem:

Let f:Sf : S \longrightarrow \mathbb{R} be a function defined on the convex subset SS of a real linear space LL. Then, ff is convex on SS if and only if its epigraph is a convex subset of S×S × \mathbb{R}; ff is concave if and only if its hypograph is a convex subset of S×S × \mathbb{R}.


References

  1. https://www.cs.umb.edu/~dsim/cs724/sconvs3.pdf